This paper presents the effect of polyphenols on microorganisms inhabiting the human gastrointestinal tract (mainly bacteria belonging to the Lactobacillus genus) and pathogenic microorganisms classified as the most common food contaminants. Plant secondary metabolites have the ability to modulate the growth of many microorganisms. Due to the metabolic changes induced by their presence in the environment, many pathogenic microorganisms are unable to grow, which in turn cause a significant reduction in their pathogenic potential. These processes include primarily the induction of ruptures in the cell membrane and disturbance of cell respiration. Often, the lack of integrity of cell membranes also leads to the disturbance of intracellular homeostasis and leakage of cellular components, such as proteins, ATP molecules or intracellular ions. Autoxidizing polyphenols also act as pro-oxidative substances. Hydrogen peroxide formed in the process of oxidation of polyphenolic compounds acts as a bactericidal substance (by induction of DNA breaks). With regard to intestinal microbiota, polyphenols are considered prebiotic substances that increase the number of commensal bacteria. They can positively influence the growth of Lactobacillus bacteria, which have the ability to metabolize undigested antioxidants in the digestive tract of humans and animals. Depending on the pH of the environment and the presence of ions, plant polyphenols in the human digestive tract can act as substances with antioxidant potential or become pro-oxidants. Thus, combining functional food with polyphenols and Lactobacillus bacteria not only protects food products against the development of undesirable and pathogenic microbiota, but also has a positive effect on human health. The paper also describes the possibility of changes in the genome of Lactobacillus bacteria (under the influence of polyphenols) and the influence of Lactobacillus spp. bacteria on the antimicrobial properties of polyphenols. The enzymatic abilities of bacteria of the genus Lactobacillus, which influence the transformation of polyphenolic compounds, were also described.