Fluids exhibit remarkable variation in their structural and dynamic properties when they are confined at the nanoscopic scale. Various factors, including geometric restriction, the size and shape of the guest molecules, the topology of the host, and guest–host interactions, are responsible for the alterations in these properties. Due to their porous structures, aluminosilicates provide a suitable host system for studying the diffusion of sorbates in confinement. Zeolites and clays are two classes of the aluminosilicate family, comprising very ordered porous or layered structures. Zeolitic materials are important due to their high catalytic activity and molecular sieving properties. Guest molecules adsorbed by zeolites display many interesting features including unidimensional diffusion, non-isotropic rotation, preferred orientation and levitation effects, depending on the guest and host characteristics. These are useful for the separation of hydrocarbons which commonly exist as mixtures in nature. Similarly, clay materials have found application in catalysis, desalination, enhanced oil recovery, and isolation barriers used in radioactive waste disposal. It has been shown that the bonding interactions, level of hydration, interlayer spacing, and number of charge-balancing cations are the important factors that determine the nature of diffusion of water molecules in clays. Here, we present a review of the current status of the diffusion mechanisms of various adsorbed species in different microporous zeolites and clays, as investigated using quasielastic neutron scattering and classical molecular dynamics simulation techniques. It is impossible to write an exhaustive review of the subject matter, as it has been explored over several decades and involves many research topics. However, an effort is made to cover the relevant issues specific to the dynamics of different molecules in microporous zeolites and clay materials and to highlight a variety of interesting features that are important for both practical applications and fundamental aspects.