The π-electron-rich C(8)-conjugated sequence of 1,4-dialkynylbutatrienes is identified as a fragile and fascinating motif occurring in carbo-benzene derivatives, and in Diederich's 1,4-bis(arylethynyl)- or 1,4-bis(triisopropylsilylethynyl)butatriene "capped" representatives, in particular, in tetraalkynylbutatriene. The family of symmetrical 1,4-dialkynylbutatrienes (E-C≡C)RC=C=C=CR(C≡C-E) is extended to functional caps (E=H, CH(3), C≡CPh, CPh=CHBr, or CPh=CBr(2)) with non-alkynyl substituents at the sp(2) vertices (R=Ph or CF(3)). The targets were selected for their potential in appealing retrosynthetic routes to carbo-benzenes, in which the aromatic C(18) macrocycle would be directly generated by sequential metathesis or reductive coupling processes. The functional 1,4-dialkynylbutrienes were synthesized by either classical methods used for the preparation of generic butatrienes (R'Li/CuX-mediated reductive coupling of gem-dihaloenynes or SnCl(2)/HCl-mediated reduction of 3,6-dioxy-octa-1,4,7-triyne precursors). Their spectroscopic and electrochemical properties are compared and analyzed on the basis of the relative extent of total conjugation.