2024
DOI: 10.1186/s13660-024-03213-2
|View full text |Cite
|
Sign up to set email alerts
|

Octonion quadratic-phase Fourier transform: inequalities, uncertainty principles, and examples

Manish Kumar,
Bhawna

Abstract: In this article, we define the octonion quadratic-phase Fourier transform (OQPFT) and derive its inversion formula, including its fundamental properties such as linearity, parity, modulation, and shifting. We also establish its relationship with the quaternion quadratic-phase Fourier transform (QQPFT). Further, we derive the Parseval formula and the Riemann–Lebesgue lemma using this transform. Furthermore, we formulate two important inequalities (sharp Pitt’s and sharp Hausdorff–Young’s inequalities) and three… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 57 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?