Background: Pigmentation is controlled by complex mechanisms. Evidence suggests that miRNAs can regulate pigmentation. However, the mechanism has not been fully elucidated. Objective In this study, we revealed a novel mechanism that regulates pigmentation involving exosomes, miRNAs and the crosstalk between keratinocytes and melanocytes. Methods: The expression and localization of exosome specific marker TSG101 in keratinocytes and melanocytes; Changes of melanin content in melanocytes after co-culture of exosome and melanocytes; Expression changes of target gene TYR and its related genes and inhibitory effect of miR-330-5p on pigmentation were studied by using various molecular biological techniques. Results: In this experiment, we used miR-330-5p in keratinocytes to verify the effect of keratinocyte derived exosome on melanocyte pigmentation. First, we found that keratinocytes secrete exosomes carrying miR-330-5p; moreover, greater miR-330-5p expression was found in exosomes derived from keratinocytes that overexpressed miR-330-5p. Second, we found that exosomes derived from keratinocytes with overexpression of miR-330-5p caused a significant increase in miR-330-5p in melanocytes. Finally, exosomes derived from keratinocytes that overexpressed miR-330-5p induced a significant decrease in the production of melanin and expression of TYR in melanocytes. Meanwhile, we overexpressed miR-330-5p in melanocytes, which also proved the inhibitory effect of miR-330-5p on pigmentation. Conclusion: These findings suggest that keratinocytes crosstalk with melanocytes in the epidermal melanin unit via exosomal miRNAs. These studies reveal an important role of exosomes in melanocyte pigmentation, which opens a new pathway of melanogenesis.