Presently there is a significant effort to develop and evaluate vaccines and antibiotics against the potential bioterrorism agent Yersinia pestis. The animal models used to test these countermeasures involve the deposition of small particles within the lung. However, deliberate aerosol release of Y. pestis will generate both small and large inhalable particles. We report in this study that the pathogenesis patterns of plague infections caused by the deposition of 1-and 12-m-particle aerosols of Y. pestis in the lower and upper respiratory tracts (URTs) of mice are different. The median lethal dose for 12-m particles was 4.9-fold greater than that for 1-m particles. The 12-m-particle infection resulted in the degradation of the nasal mucosa and nasal-associated lymphoid tissue (NALT) plus cervical lymphadenopathy prior to bacteremic dissemination. Lung involvement was limited to secondary pneumonia. In contrast, the 1-m-particle infection resulted in primary pneumonia; in 40% of mice, the involvement of NALT and cervical lymphadenopathy were observed, indicating entry via both URT lymphoid tissues and lungs. Despite bacterial deposition in the gastrointestinal tract, the involvement of Peyer's patches was not observed in either infection. Although there were major differences in pathogenesis, the recombinant F1 and V antigen vaccine and ciprofloxacin protected against plague infections caused by small-and large-particle aerosols.In humans, Yersinia pestis infections present clinically as bubonic, septicemic, and pneumonic plague. The introduction of Y. pestis into the bloodstream by flea bites results in the characteristic lymphadenopathy of bubonic plague. Lymphatic and circulatory dissemination causes hematogenous seeding of the lungs, producing secondary pneumonia. Primary pneumonic plague arises from the inhalation of aerosols containing Y. pestis. Both bubonic and primary pneumonic plague can progress to septicemia, resulting in endotoxic shock during the terminal stages of infection (26,29). There is currently a high level of interest in biodefense models of airborne diseases for the identification of virulence mechanisms and the testing of medical countermeasures. The focus is on the pneumonic forms of these diseases caused by the inhalation of smallparticle aerosols.Over the past decade, and in the context of the possible use of Y. pestis in bioterrorism, there has been significant interest in devising therapeutics for pneumonic plague. Antibiotics including tetracyclines, streptomycin, and chloramphenicol are used to treat pneumonic plague (5, 44). Recently, the broadspectrum fluoroquinolone antibiotic ciprofloxacin has been proposed for postexposure prophylaxis for mass-casualty-setting plague (26). Ciprofloxacin possesses excellent pharmacokinetic properties, with high lung concentrations providing efficacy against murine pneumonic plague (11, 41, 42). Significant progress in the development of plague vaccines has been made. Vaccines containing F1 capsular polypeptide and LcrV (V) antigens protect agai...