Hardware errors become more common as silicon technologies shrink and become more vulnerable, especially in memory cells, which are the most exposed to errors. Permanent and intermittent faults are caused by manufacturing variability and circuits ageing. While these can be mitigated once they are identified, their continuous rate of appearance throughout the lifetime of memory devices will always cause unexpected errors. In addition, transient faults are caused by effects such as radiation or small voltage/frequency margins, and there is no efficient way to shield against these events.
Other constraints related to the diminishing sizes of transistors, such as power consumption and memory latency have caused the microprocessor industry to turn to increasingly complex processor architectures. To solve the difficulties arising from programming such architectures, programming models have emerged that rely on runtime systems. These systems form a new intermediate layer on the hardware-software abstraction stack, that performs tasks such as distributing work across computing resources: processor cores, accelerators, etc. These runtime systems dispose of a lot of information, both from the hardware and the applications, and offer thus many possibilities for optimisations.
This thesis proposes solutions to the increasing fault rates in memory, across multiple resilience disciplines, from algorithm-based fault tolerance to hardware error correcting codes, through OS reliability strategies. These solutions rely for their efficiency on the opportunities presented by runtime systems.
The first contribution of this thesis is an algorithmic-based resilience technique, allowing to tolerate detected errors in memory. This technique allows to recover data that is lost by performing computations that rely on simple redundancy relations identified in the program. The recovery is demonstrated for a family of iterative solvers, the Krylov subspace methods, and evaluated for the conjugate gradient solver. The runtime can transparently overlap the recovery with the computations of the algorithm, which allows to mask the already low overheads of this technique.
The second part of this thesis proposes a metric to characterise the impact of faults in memory, which outperforms state-of-the-art metrics in precision and assurances on the error rate. This metric reveals a key insight into data that is not relevant to the program, and we propose an OS-level strategy to ignore errors in such data, by delaying the reporting of detected errors. This allows to reduce failure rates of running programs, by ignoring errors that have no impact.
The architectural-level contribution of this thesis is a dynamically adaptable Error Correcting Code (ECC) scheme, that can increase protection of memory regions where the impact of errors is highest. A runtime methodology is presented to estimate the fault rate at runtime using our metric, through performance monitoring tools of current commodity processors. Guiding the dynamic ECC scheme online using the methodology's vulnerability estimates allows to decrease error rates of programs at a fraction of the redundancy cost required for a uniformly stronger ECC.
This provides a useful and wide range of trade-offs between redundancy and error rates.
The work presented in this thesis demonstrates that runtime systems allow to make the most of redundancy stored in memory, to help tackle increasing error rates in DRAM. This exploited redundancy can be an inherent part of algorithms that allows to tolerate higher fault rates, or in the form of dead data stored in memory. Redundancy can also be added to a program, in the form of ECC. In all cases, the runtime allows to decrease failure rates efficiently, by diminishing recovery costs, identifying redundant data, or targeting critical data. It is thus a very valuable tool for the future computing systems, as it can perform optimisations across different layers of abstractions.
Los errores en memoria se vuelven más comunes a medida que las tecnologías de silicio reducen su tamaño. La variabilidad de fabricación y el envejecimiento de los circuitos causan fallos permanentes e intermitentes. Aunque se pueden mitigar una vez identificados, su continua tasa de aparición siempre causa errores inesperados.
Además, la memoria también sufre de fallos transitorios contra los cuales no se puede proteger eficientemente. Estos fallos están causados por efectos como la radiación o los reducidos márgenes de voltaje y frecuencia.
Otras restricciones coetáneas, como el consumo de energía y la latencia de la memoria, obligaron a las arquitecturas de computadores a volverse cada vez más complejas. Para programar tales procesadores, se desarrollaron modelos de programación basados en entornos de ejecución. Estos sistemas forman una nueva abstracción entre hardware y software, realizando tareas como la distribución del trabajo entre recursos informáticos: núcleos de procesadores, aceleradores, etc. Estos entornos de ejecución disponen de mucha información tanto sobre el hardware como sobre las aplicaciones, y ofrecen así muchas posibilidades de optimización.
Esta tesis propone soluciones a los fallos en memoria entre múltiples disciplinas de resiliencia, desde la tolerancia a fallos basada en algoritmos, hasta los códigos de corrección de errores en hardware, incluyendo estrategias de resiliencia del sistema operativo. La eficiencia de estas soluciones depende de las oportunidades que presentan los entornos de ejecución.
La primera contribución de esta tesis es una técnica a nivel algorítmico que permite corregir fallos encontrados mientras el programa su ejecuta. Para corregir fallos se han identificado redundancias simples en los datos del programa para toda una clase de algoritmos, los métodos del subespacio de Krylov (gradiente conjugado, GMRES, etc). La estrategia de recuperación de datos desarrollada
permite corregir errores sin tener que reinicializar el algoritmo, y aprovecha el modelo de programación para superponer las computaciones del algoritmo y de la recuperación de datos.
La segunda parte de esta tesis propone una métrica para caracterizar el impacto de los fallos en la memoria. Esta métrica supera en precisión a las métricas de vanguardia y permite identificar datos que son menos relevantes para el programa.
Se propone una estrategia a nivel del sistema operativo retrasando la notificación de los errores detectados, que permite ignorar fallos en estos datos y reducir la tasa de fracaso del programa.
Por último, la contribución a nivel arquitectónico de esta tesis es un esquema de Código de Corrección de Errores (ECC por sus siglas en inglés) adaptable dinámicamente. Este esquema puede aumentar la protección de las regiones de memoria donde el impacto de los errores es mayor. Se presenta una metodología para estimar el riesgo de fallo en tiempo de ejecución utilizando nuestra métrica,
a través de las herramientas de monitorización del rendimiento disponibles en los procesadores actuales. El esquema de ECC guiado dinámicamente con estas estimaciones de vulnerabilidad permite disminuir la tasa de fracaso de los programas a una fracción del coste de redundancia requerido para un ECC uniformemente más fuerte.
El trabajo presentado en esta tesis demuestra que los entornos de ejecución permiten aprovechar al máximo la redundancia contenida en la memoria, para contener el aumento de los errores en ella. Esta redundancia explotada puede ser una parte inherente de los algoritmos que permite tolerar más fallos, en forma de datos inutilizados almacenados en la memoria, o agregada a la memoria de un
programa en forma de ECC. En todos los casos, el entorno de ejecución permite disminuir los efectos de los fallos de manera eficiente, disminuyendo los costes de recuperación, identificando datos redundantes, o focalizando esfuerzos de protección en los datos críticos.