Abstract-Given a graph, how can we automatically discover roles for nodes? Roles could be, eg., 'bridges', or 'peripherynodes', etc. Roles are compact summaries of a node's behavior that generalize across networks. They enable numerous novel and useful network mining tasks, such as sense-making, searching for similar nodes, and node classification. We propose RolX (Role eXtraction), a scalable (linear in the number of edges), unsupervised learning approach for automatically extracting roles from general network data. We demonstrate the effectiveness of RolX on several network mining tasks, from exploratory data analysis to network transfer learning. Moreover, we compare network role discovery with network community discovery. We highlight fundamental differences between the two (e.g., roles generalize across disconnected networks, communities do not).