Mochizuki and Fukui (Jpn J Ichthyol 30 () 27-36) studied the development and replacement of the upper jaw teeth in a Japanese fish species, Sicyopterus japonicus (Gobioidei: Sicydiinae), and they reported that worn-out functional teeth in the upper jaw were not shed outside the skin but were taken into the soft tissue of the upper jaw and completely resorbed there. To date, however, this phenomenon appears poorly documented. Furthermore, the mechanism for the resorption of these teeth remains to be determined. In this study, we examined this phenomenon by using 3D microcomputed tomography (m-CT), scanning electron microscopy (SEM), and various techniques of light (LM) and electron (EM) microcopy. This study demonstrated that the upper jaw dentition of this fish was more or less simultaneously replaced with the replacement occurring during short time periods and that the lingual movement of the replacement teeth to the functional tooth position advanced simultaneously in a given row. Furthermore, our study also revealed that many worn-out functional teeth were engulfed by the oral epithelium, invaginated into the lingual shallow ditch of the premaxilla, and were resorbed/degraded completely by numerous foreign body giant cells rather than by odontoclasts during periods of at least three intervals of tooth replacement. The complete resorption/degradation of worn-out functional teeth in the soft tissue of the upper jaw suggests the possibility of the reuse of their components (minerals such as Ca and P, including Fe) for rapid and successional production of new replacement teeth in the upper jaw of adult S. japonicus. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:111-124, 2018. © 2017 Wiley Periodicals, Inc.