Technological processes associated with municipal solid waste (MSW) processing are a potential source of odorant emissions, i.e., substances that cause negative olfactory impressions. When released into the atmosphere, these substances can cause odour nuisance complaints from residents. Many scientists have noted the strong relationship between odorant emission sources and odour concentrations and their significant impact on the living comfort of residents near these sources, as well as their social and economic relations. This paper attempts to estimate the odour load of selected elements of the technological sequence of a biogas plant processing municipal waste. Odour load was characterised by four constituents: odorant emissions, odour emissions, the variability of these emissions, and the emission levels per 1 Mg (1000 kg) of waste. The highest odour emissions accompany the storage of mixed MSW, which is associated with a large amount of waste. Limiting the storage time of waste should be an indispensable part of the technological regime. The dominant odorant associated with mixed MSW storage is NH3 emissions. The greatest variability of odorant and odour emissions concerns gases captured from selectively collected waste plastics and metals, due to the varied forms of selective waste collection in the service area, and their unstable efficiency. High variability of NH3 and odour emissions also accompanies digestate dewatering.