IEEE Vehicular Technology Conference 2006
DOI: 10.1109/vtcf.2006.404
|View full text |Cite
|
Sign up to set email alerts
|

OFDM Channel Prediction Using Fuzzy Update LMS Algorithm in Time-Variant Mobile Channel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
2

Year Published

2008
2008
2022
2022

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(9 citation statements)
references
References 7 publications
0
7
0
2
Order By: Relevance
“…Fuzzy systems can be used to update LMS algorithm for OFDM channel estimation in time-variant mobile channels. Such a work is reported in [41]. 11.…”
Section: Application Of Fuzzy Fuzzy-neural and Neuro-fuzzy Systems Imentioning
confidence: 82%
“…Fuzzy systems can be used to update LMS algorithm for OFDM channel estimation in time-variant mobile channels. Such a work is reported in [41]. 11.…”
Section: Application Of Fuzzy Fuzzy-neural and Neuro-fuzzy Systems Imentioning
confidence: 82%
“…Generative adversarial network (GAN) [315][316][317][318], general regression neural network (GRNN) [319,320], and fuzzy neural network (FNN) [321,322] have also been investigated in the channel estimation subject. Likewise, the least mean error [323], metalearning [324], k-means clustering [325], and LS [326] techniques were applied to leverage NN training.…”
Section: Other Neural Networkmentioning
confidence: 99%
“…Considera-se ainda que um prefixo cíclico foi inserido em cada símbolo OFDM de forma a eliminar a interferência intersimbólica. Neste caso, o símbolo transmitido e o símbolo recebido em cada subportadora estão relacionados por meio de [4], [5]:…”
Section: Modelo Do Sistema Ofdmunclassified
“…O desempenho do preditor propostoé comparado com os algoritmos NLMS (normalized least mean square) e RLS (recursive least squares) por meio de simulações em um cenário sob as especificações do downlink do padrão 3GPP LTE. Diferentemente de outros preditores propostos na literatura [4], [5], [6], nãoé necessário o conhecimento das matrizes de correlação do canal ou uma escolha rígida para o passo de adaptação. Além disso, por utilizar o conceito de set-membership, o preditor apresenta boa velocidade de convergência e reduzida taxa de atualização de seus coeficientes devidoà sua natureza seletiva.…”
Section: Introductionunclassified