2023
DOI: 10.1007/s10476-023-0204-8
|View full text |Cite
|
Sign up to set email alerts
|

Off-Diagonal Two Weight Bumps for Fractional Sparse Operators

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 17 publications
0
1
0
Order By: Relevance
“…In 2013, Lerner [22] proved this conjecture by assuming that trueΦ¯Bp,trueΨ¯Bp$\bar{\Phi }\in B_p, \bar{\Psi }\in B_{p^{\prime }}$ and a pair of weights false(ω,vfalse)$(\omega ,v)$ satisfies trueprefixsupQfalse∥ω1/pfalse∥Ψ,Qv1/pΦ,Q<.$$\begin{align*} \sup _Q\Vert \omega ^{1/p}\Vert _{\Psi ,Q}\Vert v^{-1/p}\Vert _{\Phi ,Q}&lt;\infty . \end{align*}$$For two weight inequalities for other operators, see [7–9, 14, 20, 31, 34], etc. For more recent works on improving the bump conditions, see [25, 35, 37].…”
Section: Introduction and Main Resultsmentioning
confidence: 99%
“…In 2013, Lerner [22] proved this conjecture by assuming that trueΦ¯Bp,trueΨ¯Bp$\bar{\Phi }\in B_p, \bar{\Psi }\in B_{p^{\prime }}$ and a pair of weights false(ω,vfalse)$(\omega ,v)$ satisfies trueprefixsupQfalse∥ω1/pfalse∥Ψ,Qv1/pΦ,Q<.$$\begin{align*} \sup _Q\Vert \omega ^{1/p}\Vert _{\Psi ,Q}\Vert v^{-1/p}\Vert _{\Phi ,Q}&lt;\infty . \end{align*}$$For two weight inequalities for other operators, see [7–9, 14, 20, 31, 34], etc. For more recent works on improving the bump conditions, see [25, 35, 37].…”
Section: Introduction and Main Resultsmentioning
confidence: 99%