Dicamba was labeled in dicamba-resistant cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] in 2017, resulting in a record number of off-target complaints. To address off-target movement via volatilization, experiments were conducted to evaluate the effectiveness of potassium tetraborate tetrahydrate (KBo) as a volatility-reducing agent (VRA) with dicamba. Low-tunnel experiments examined: 1) whether KBo functions as a dicamba VRA, 2) the relationship between KBo concentration and dicamba volatilization, 3) the effectiveness of KBo compared to potassium acetate as a VRA, and 4) the impact of KBo on dicamba volatilization with and without glufosinate. In a large-scale trial (0.4-ha plots), the effectiveness of KBo in reducing dicamba volatilization was quantified relative to a commercial dicamba application labeled for use in 2020. The addition of KBo to dicamba reduced volatility over dicamba alone and a dicamba plus potassium acetate premix. As KBo concentration increased in the dicamba spray solution, volatilization was reduced exponentially. Dicamba volatilization with the addition of KBo at 0.01 M was comparable to dicamba plus potassium acetate at 0.05 M. Potassium tetraborate tetrahydrate was more effective than potassium acetate at reducing volatility of a dicamba plus glufosinate mixture. In large-scale experiments over a 30-hr period, the addition of KBo to a DGA dicamba plus glyphosate mixture lowered dicamba volatilization 82 to 89% over the herbicide mixture alone. Overall, the addition of KBo to dicamba appeared promising as a VRA compared to what is commercially available.