Offline Author Identification using Non-Congruent Handwriting Data Based on Deep Convolutional Neural Network
Ying LIU,
Gege Meng,
Naiyue ZHANG
Abstract:This investigation presents a novel technique for offline author identification using handwriting samples across diverse experimental conditions, addressing the intricacies of various writing styles and the imperative for organizations to authenticate authorship. Notably, the study leverages inconsistent data and develops a method independent of language constraints. Utilizing a comprehensive dataset adhering to American Society for Testing and Materials (ASTM) standards, a deep convolutional neural network (D… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.