In Recommender Systems, impressions are a relatively new type of information that records all products previously shown to the users. They are also a complex source of information, combining the effects of the recommender system that generated them, search results, or business rules that may select specific products for recommendations. The fact that the user interacted with a specific item given a list of recommended ones may benefit from a richer interaction signal, in which some items the user did not interact with may be considered negative interactions. This work presents a preliminary evaluation of recommendation models with impressions. First, impressions are characterized by describing their assumptions, signals, and challenges. Then, an evaluation study with impressions is described. The study's goal is two-fold: to measure the effects of impressions data on properly-tuned recommendation models using current open-source datasets and disentangle the signals within impressions data. Preliminary results suggest that impressions data and signals are nuanced, complex, and effective at improving the recommendation quality of recommenders. This work publishes the source code, datasets, and scripts used in the evaluation to promote reproducibility in the domain.