Landslides are the second most frequent tsunami source worldwide. However, their complex and diverse nature of origin combined with their infrequent event records make prognostic modelling challenging. In this paper, we present a probabilistic framework for analysing uncertainties emerging from the landslide source process. This probabilistic framework employs event trees and is used to conduct tsunami uncertainty analysis as well as probabilistic tsunami hazard analysis (PTHA). An example study is presented for the Lyngen fjord in Norway. This application uses a mix of empirical landslide data combined with expert judgement to come up with probability maps for tsunami inundation. Based on this study, it is concluded that the present landslide tsunami hazard analysis is largely driven by epistemic uncertainties. These epistemic uncertainties can be incorporated in the probabilistic framework. Conducting a literature analysis, we further show examples of how landslide and tsunami data can be used to better constrain landslide uncertainties, combined with statistical and numerical analysis methods. We discuss how these methods, combined with the probabilistic framework, can be used to improve landslide tsunami hazard analysis in the future.