Low-salinity waterflooding/smart waterflooding (LSWF/SWF) is a technique involving the injection of water with a modified composition to alter the equilibrium between rock and fluids within porous media to enhance oil recovery. This approach offers significant advantages, including environmental friendliness and economic efficiency. Rock/fluid mechanisms such as wettability alteration and fines migration and fluid/fluid mechanisms such as a change in interfacial tension and viscoelasticity are considered active mechanisms during LSWF/SWF. In this study, we evaluated the effect of these mechanisms, by LSWF/SWF, on sandstones. To investigate the dominant mechanisms, coreflooding studies were performed using different injected fluid composition/salinity and wettability states. A comparative analysis of the recovery and mobility reduction factor was performed to clarify the conditions at which fluid/fluid mechanisms are also effective. Our studies showed that wettability alteration is the most dominant mechanism during LSWF/SWF, but, for weak oil-wet cases, optimizing brine compositions may activate fluid/fluid mechanisms. Brine composition significantly influences interface stability and performance, with sulfate content playing a crucial role in enhancing interface properties. This was observed via mobility behavior. A comparative analysis of pressure differentials showed that fines migration may act as a secondary mechanism and not a dominant one. This study highlights the importance of tailored brine compositions in maximizing oil recovery and emphasizes the complex interplay between rock and fluid properties in enhanced oil recovery strategies.