The reversible emulsion drilling fluid system combines the advantages of both oil-based and water-based drilling fluids, which can achieve ideal results in different stages of drilling and completion, and the system can be reused to effectively reduce costs. However, the research on reversible emulsions mainly focuses on the development of new reversible emulsifiers, while the specific phase transformation mechanism of reversible emulsion systems is still unclear. In this paper, a stable reversible emulsion was prepared using the reversible emulsifier DMOB as a raw material, and the reversible emulsion performance of the alkali response from the O/W emulsion phase to the W/O emulsion was studied. The microstructure of reversible emulsions was studied by a microscope, a cryogenic transmission electron microscopy, and a laser particle size analyzer. The changes in macroscopic properties of reversible emulsions in the process of alkali conversion were studied by pH, conductivity, demulsification voltage, static stability, viscosity, rheology, and other indicators, and the conversion mechanism of reversible emulsions from O/W emulsion ⟶ bicontinuous structure ⟶ O/W/O emulsion ⟶ W/O emulsion was clarified. The details are as follows: in the first stage, when the amount of NaOH ≤ 0.43 vol.%, the overall particle size of the emulsion decreases first and then increases with the increase in NaOH dosage. In the second stage, when the amount of NaOH was 0.45 vol.%, a double continuous structure was formed inside the emulsion. In the third stage, when the amount of NaOH is 0.48 vol.%, the O/W/O emulsion is formed, and with the increase in stirring time, the internal oil droplets gradually accumulate and are discharged from the water droplets, and finally, the W/O emulsion is formed. In the fourth stage, when the dosage of 0.50 vol.% ≤ NaOH ≤ 5.00 vol.%, the W/O emulsion was formed, and with the increase of NaOH dosage, the structure and compactness between water droplets increased first and then decreased. In the whole process, with the increase in the amount of NaOH solution, the total particle size of the emulsion first decreased and then increased.