2016 Asia-Pacific Microwave Conference (APMC) 2016
DOI: 10.1109/apmc.2016.7931359
|View full text |Cite
|
Sign up to set email alerts
|

Oil spill detection from RISAT-1 imagery using texture analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
4

Year Published

2019
2019
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(7 citation statements)
references
References 4 publications
0
3
0
4
Order By: Relevance
“…Various kernel functions, including linear, polynomial, sigmoid, and radial basis function (RBF) kernels, are used to reduce the computational cost of dealing with high-dimensional feature spaces [248]. RBF [22,112,114,115,155,185,198] and polynomial kernel [194] are commonly used kernels in oil spill studies. However, the selection of the appropriate kernel type and its parameter configuration should be considered when adopting SVM for oil spill classification.…”
Section: Support Vector Machinementioning
confidence: 99%
“…Various kernel functions, including linear, polynomial, sigmoid, and radial basis function (RBF) kernels, are used to reduce the computational cost of dealing with high-dimensional feature spaces [248]. RBF [22,112,114,115,155,185,198] and polynomial kernel [194] are commonly used kernels in oil spill studies. However, the selection of the appropriate kernel type and its parameter configuration should be considered when adopting SVM for oil spill classification.…”
Section: Support Vector Machinementioning
confidence: 99%
“…Misra & Balaji (2017) melakukan kajian deteksi dengan data Radarsat 2 menggunakan metode adaptive threshold dan analisis tekstur, dan menujukkan bahwa analisis tekstur meningkatkan hasil estimasi sebaran tumpahan minyak. Joseph, Jayasri, Dutta, Kumari, & Prasad (2017) Tahap awal dilakukan koreksi data meliputi koreksi atau kalibrasi radiometrik dengan mengkonversi nilai digital menjadi nilai backscatter, dan koreksi geometrik dilakukan dengan algoritma Range-Dopler Terain Corection dan menggunakan referensi data DEM (Digital Elevation Model) SRTM resolusi 30 m. Selanjutnya dilakukan proses filtering untuk menghilangkan speckle noise menggunakan filter Lee. Menurut Marghany & Van Genderen (2014) algoritma Lee dapat beroperasi dengan baik pada lapisan minyak yang linier.…”
Section: Pendahuluanunclassified
“…Nesse contexto o presente trabalho tem como objetivo avaliar o desempenho de métodos de aprendizado profundo para a classificação de eventos no mar usando imagens de radar de abertura sintética (SAR). Os métodos de aprendizado profundo [6,8] destacam-se por seu ótimo desempenho em cenários de alta complexidade superando os métodos tradicionais baseados em algoritmos de classificação como Máquinas de Vetores de Suporte (SVM) [10,11] ou Random Forest [7], que requerem um processo de extração de atributos desenhado por um especialista. Por outro lado, no aprendizado profundo é feito um aprendizado end-to-end, onde os atributos mais representativos são aprendidos e extraídos pelo modelo, apresentando um grande benefício na automatização do estudo de atributos, havendo uma menor intervenção de especialistas.…”
Section: Motivaçãounclassified
“…Várias abordagens têm sido propostas para o estudo de eventos no mar: tendo abordagens baseados em algoritmos de aprendizado de máquina [7,9,10,11,12] (e.g. Support Vector Machines -SVM, Random Forest, Clustering) e aprendizado profundo [13,14,15,16,17,18,19] (e.g.…”
Section: Organização Dos Capítulos Restantes Da Dissertaçãounclassified
See 1 more Smart Citation