2022
DOI: 10.53070/bbd.1173093
|View full text |Cite
|
Sign up to set email alerts
|

Olayla İlgili Potansiyel Sinyalleri Kullanarak Şizofreninin Analizi ve Sınıflandırılması

Abstract: Şizofreni (SZ), dünya çapında birçok insanı etkileyen ve erken teşhis ve tedavi edilmediği takdirde ölüme neden olan nöropsikiyatrik bir hastalıktır. Erken tanı için yaygın olarak kullanılan yöntemlerden biri elektroensefalografidir (EEG). Sinyal işleme ve makine öğrenme yöntemlerinin EEG sinyallerine uygulanması, SZ hastalığını belirlemek isteyen uzmanlara ve araştırmacılara destek olabilir. Bu çalışmada, SZ hastası ve sağlıklı kontrol grubuna işitsel uyaranların gönderilmesi sonucunda kaydedilen EEG sinyalle… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 15 publications
0
2
0
Order By: Relevance
“…The studies in Vázquez et al (2021) and ( Guo et al, 2022 ), employing Butterworth and Vietoris–Rips filtering for preprocessing and RF classifier and Bottleneck and Wasserstein distances, respectively, for classification of SCZ, did not report their results in terms of accuracy. The methods in Jahmunah et al (2019) ; ( Khare and Bajaj, 2021 ; Rajesh and Sunil Kumar, 2021 ; Luján et al, 2022 ; Zandbagleh et al, 2022 ), and ( Aksöz et al, 2022 ) achieved moderate accuracy with different preprocessing techniques. However, the approaches in Neuhaus et al (2013) and ( Du et al, 2020 ) secure lower accuracies but still surpass the performance of Devia et al (2019) .…”
Section: Schizophrenia Classification Using Machine Learningmentioning
confidence: 99%
See 1 more Smart Citation
“…The studies in Vázquez et al (2021) and ( Guo et al, 2022 ), employing Butterworth and Vietoris–Rips filtering for preprocessing and RF classifier and Bottleneck and Wasserstein distances, respectively, for classification of SCZ, did not report their results in terms of accuracy. The methods in Jahmunah et al (2019) ; ( Khare and Bajaj, 2021 ; Rajesh and Sunil Kumar, 2021 ; Luján et al, 2022 ; Zandbagleh et al, 2022 ), and ( Aksöz et al, 2022 ) achieved moderate accuracy with different preprocessing techniques. However, the approaches in Neuhaus et al (2013) and ( Du et al, 2020 ) secure lower accuracies but still surpass the performance of Devia et al (2019) .…”
Section: Schizophrenia Classification Using Machine Learningmentioning
confidence: 99%
“…These studies employ diverse databases, including IPN, Kaggle SCZ, and private datasets, showcasing the adaptability of methods across various contexts. Various preprocessing techniques, such as wavelet transform ( Du et al, 2020 ), FIR filter ( Aksöz et al, 2022 ), and adaptive neuro-fuzzy inference system (ANFIS) ( Najafzadeh et al, 2021 ), highlight the richness and diversity of approaches in EEG signal analysis. Noteworthy is the study in Najafzadeh et al (2021) , which achieves a perfect accuracy of 100% using a Butterworth filter alongside ANFIS, SVM, and ANN.…”
Section: Schizophrenia Classification Using Machine Learningmentioning
confidence: 99%