Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BACKGROUND Recording time in invasive neuroscientific research is limited and must be used as efficiently as possible. Time is often lost due to a long setup time and errors by the researcher, driven by the number of manually performed steps. Currently, recording solutions that automate experimental overhead are either custom-made by researchers or provided as a submodule in comprehensive neuroscientific toolboxes, and there are no platforms focused explicitly on recording. OBJECTIVE Minimizing the number of manual actions may reduce error rates and experimental overhead. However, automation should avoid reducing the flexibility of the system. Therefore, we developed a software package named T-REX (Standalone Recorder of Experiments) that specifically simplifies the recording of experiments while focusing on retaining flexibility. METHODS The proposed solution is a standalone webpage that the researcher can provide without an active internet connection. It is built using Bootstrap5 for the frontend and the Python package Flask for the backend. Only Python 3.7+ and a few dependencies are required to start the different experiments. Data synchronization is implemented using Lab Streaming Layer, an open-source networked synchronization ecosystem, enabling all major programming languages and toolboxes to be used for developing and executing the experiments. Additionally, T-REX runs on Windows, Linux, and macOS. RESULTS The system reduces experimental overhead during recordings to a minimum. Multiple experiments are centralized in a simple local web interface that reduces an experiment’s setup, start, and stop to a single button press. In principle, any type of experiment, regardless of the scientific field (eg, behavioral or cognitive sciences, and electrophysiology), can be executed with the platform. T-REX includes an easy-to-use interface that can be adjusted to specific recording modalities, amplifiers, and participants. Because of the automated setup, easy recording, and easy-to-use interface, participants may even start and stop experiments by themselves, thus potentially providing data without the researcher’s presence. CONCLUSIONS We developed a new recording platform that is operating system independent, user friendly, and robust. We provide researchers with a solution that can greatly increase the time spent on recording instead of setting up (with its possible errors).
BACKGROUND Recording time in invasive neuroscientific research is limited and must be used as efficiently as possible. Time is often lost due to a long setup time and errors by the researcher, driven by the number of manually performed steps. Currently, recording solutions that automate experimental overhead are either custom-made by researchers or provided as a submodule in comprehensive neuroscientific toolboxes, and there are no platforms focused explicitly on recording. OBJECTIVE Minimizing the number of manual actions may reduce error rates and experimental overhead. However, automation should avoid reducing the flexibility of the system. Therefore, we developed a software package named T-REX (Standalone Recorder of Experiments) that specifically simplifies the recording of experiments while focusing on retaining flexibility. METHODS The proposed solution is a standalone webpage that the researcher can provide without an active internet connection. It is built using Bootstrap5 for the frontend and the Python package Flask for the backend. Only Python 3.7+ and a few dependencies are required to start the different experiments. Data synchronization is implemented using Lab Streaming Layer, an open-source networked synchronization ecosystem, enabling all major programming languages and toolboxes to be used for developing and executing the experiments. Additionally, T-REX runs on Windows, Linux, and macOS. RESULTS The system reduces experimental overhead during recordings to a minimum. Multiple experiments are centralized in a simple local web interface that reduces an experiment’s setup, start, and stop to a single button press. In principle, any type of experiment, regardless of the scientific field (eg, behavioral or cognitive sciences, and electrophysiology), can be executed with the platform. T-REX includes an easy-to-use interface that can be adjusted to specific recording modalities, amplifiers, and participants. Because of the automated setup, easy recording, and easy-to-use interface, participants may even start and stop experiments by themselves, thus potentially providing data without the researcher’s presence. CONCLUSIONS We developed a new recording platform that is operating system independent, user friendly, and robust. We provide researchers with a solution that can greatly increase the time spent on recording instead of setting up (with its possible errors).
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis. Histone H3K9me3 inhibition caused S-G2 delay in synchronous cells, without any effects at G1. Differential labeling and nuclear envelope swelling upon decompaction indicate an extension of the inner compartment into telosomal anchorages (TAs). Additionally, limited effects of low-concentration sirtinol on bulk BfCs, coupled with distinct mobility patterns in MNase-digested and psoralen-crosslinked nuclei observed on 2D gels, suggest that telomeric nucleosomes (TNs) are the primary histone structures. The absence of a nucleosomal ladder with cDNA probes, the presence of histone H2A and telomere-enriched H3.3 variants, along with the immuno-localization of H3 variants mainly at the NE further reinforce telomeric regions as the main nucleosomal domains. Cumulative biochemical and molecular analyses suggest that telomeric repeats constitute the major octameric MNRPs that provision chromosomal anchorage at the NE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.