African lungfish (Protopterus) seem unique among osteognathostomes in possessing a potential vomeronasal organ homolog in form of accessory epithelial crypts within their nasal cavity. Many details regarding structural and functional properties of these crypts are still unexplored. In this study, we reinvestigate the issue and also present the first data on epithelial crypts in the South American lungfish Lepidosiren paradoxa. The nasal cavities of L. paradoxa and Protopterus annectens were studied using histology, scanning electron microscopy, and alcian blue and PAS staining. In both species, the epithelial crypts consist of a pseudostratified sensory epithelium and a monolayer of elongated glandular cells, in accordance with previously published data on Protopterus. In addition, we found a new second and anatomically distinct type of mucous cell within the duct leading into the crypt. These glandular duct cells are PAS positive, whereas the elongated glandular cells are stainable with alcian blue, suggesting distinct functions of their respective secretions. Furthermore, the two lungfish species show differently structured crypt sensory epithelia and external crypt morphology, with conspicuous bilaterally symmetrical stripes of ciliated cells in L. paradoxa. Taken together, our data suggest that stimulus transport into the crypts involves both ciliary movement and odorant binding mucus.