The ecotropic viral integration site-1 (EVI-1) is a nuclear transcription factor and has an essential function in the proliferation/maintenance of haematopoietic stem cells. Aberrant expression of EVI-1 has been frequently found in myeloid leukaemia as well as in several solid tumours, and is associated with a poor patient survival. It was recently shown that EVI-1 associates with two different histone methyltransferases (HMTs), SUV39H1 and G9a. However, the functional roles of these HMTs in EVI-1-mediated leukemogenesis remain unclear. In this study, we showed that EVI-1 physically interacts with SUV39H1 and G9a, but not with Set9. Immunofluorescence analysis revealed that EVI-1 colocalizes with these HMTs in nuclei. We also found that the catalytically inactive form of SUV39H1 abrogates the transcriptional repression mediated by EVI-1, suggesting that SUV39H1 is actively involved in EVI-1-mediated transcriptional repression. Furthermore, RNAi-based knockdown of SUV39H1 or G9a in Evi-1-expressing progenitors significantly reduced their colony-forming activity. In contrast, knockdown of these HMTs did not impair bone marrow immortalization by E2A/HLF. These results indicate that EVI-1 forms higher-order complexes with HMTs, and this association has a role in the transcription repression and bone marrow immortalization. Targeting these HMTs may be of therapeutic benefit in the treatment for EVI-1-related haematological malignancies.