Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Distinguishing periods of intermittent unrest from the run-up to eruption is a major challenge at volcanoes around the globe. Comparing multidisciplinary monitoring data with mineral chemistry that records the physical and spatio-temporal evolution of magmas fundamentally advances our ability to forecast eruptions. The recent eruption of Mauna Loa, Earth’s largest active volcano, provides a unique opportunity to differentiate unrest from run-up and improve forecasting of future eruptions. After decades of intermittent seismic and geodetic activity over 38 years of repose, Mauna Loa began erupting on 27 November 2022. Here we present a multidisciplinary synthesis that tracks the spatio-temporal evolution of precursory activity by integrating mineral and melt chemistry, fluid inclusion barometry, numerical modeling of mineral zoning, syn-eruptive gas plume measurements, the distribution and frequency of earthquake hypocenters, seismic velocity changes, and ground deformation. These diverse data indicate that the eruption occurred following a 2-month period of sustained magma intrusion from depths of 3–5 km up to 1–2 km beneath the summit caldera, providing a new model of the plumbing system at this very high threat volcano. Careful correlation of both the geochemistry and instrumental monitoring data improves our ability to distinguish unrest from the run-up to eruption by providing deeper understanding of the both the monitoring data and the magmatic system—an approach that could be applied at other volcanic systems worldwide.
Distinguishing periods of intermittent unrest from the run-up to eruption is a major challenge at volcanoes around the globe. Comparing multidisciplinary monitoring data with mineral chemistry that records the physical and spatio-temporal evolution of magmas fundamentally advances our ability to forecast eruptions. The recent eruption of Mauna Loa, Earth’s largest active volcano, provides a unique opportunity to differentiate unrest from run-up and improve forecasting of future eruptions. After decades of intermittent seismic and geodetic activity over 38 years of repose, Mauna Loa began erupting on 27 November 2022. Here we present a multidisciplinary synthesis that tracks the spatio-temporal evolution of precursory activity by integrating mineral and melt chemistry, fluid inclusion barometry, numerical modeling of mineral zoning, syn-eruptive gas plume measurements, the distribution and frequency of earthquake hypocenters, seismic velocity changes, and ground deformation. These diverse data indicate that the eruption occurred following a 2-month period of sustained magma intrusion from depths of 3–5 km up to 1–2 km beneath the summit caldera, providing a new model of the plumbing system at this very high threat volcano. Careful correlation of both the geochemistry and instrumental monitoring data improves our ability to distinguish unrest from the run-up to eruption by providing deeper understanding of the both the monitoring data and the magmatic system—an approach that could be applied at other volcanic systems worldwide.
Rapid-response petrological monitoring is a major advance for volcano observatories, allowing them to build and validate models of plumbing systems that supply eruptions in near-real-time. The depth of magma storage has recently been identified as high-priority information for volcanic observatories, yet this information is not currently obtainable via petrological monitoring methods on timescales relevant to eruption response. Fluid inclusion barometry (using micro-thermometry or Raman spectroscopy) is a well-established petrological method to estimate magma storage depths and has been proposed to have potential as a rapid-response monitoring tool, although this has not been formally demonstrated. To address this deficiency, we performed a near-real-time rapid-response simulation for the September 2023 eruption of Kīlauea, Hawaiʻi. We show that Raman-based fluid inclusion barometry can robustly determine reservoir depths within a day of receiving samples — a transformative timescale that has not previously been achieved by petrological methods. Fluid inclusion barometry using micro-thermometric techniques has typically been limited to systems with relatively deep magma storage (>0.4 g/cm3 or >7 km) where measurements of CO2 density are easy and accurate because the CO2 fluid homogenizes into the liquid phase. Improvements of the accuracy of Raman spectroscopy measurements of fluids with low CO2 density over the past couple of decades has enabled measurements of fluid inclusions from shallower magmatic systems. However, one caveat of examining shallower systems is that the fraction of H2O in the fluid may be too high to reliably convert CO2 density to pressure. To test the global applicability of rapid response fluid inclusion barometry, we compiled a global melt inclusion dataset (>4000 samples) and calculate the fluid composition at the point of vapor saturation (${\mathrm{X}}_{{\mathrm{H}}_2\mathrm{O}}$). We show that fluid inclusions in crystal-hosts from mafic compositions (<57 wt. % SiO2) — likely representative of magmas recharging many volcanic systems worldwide — trap fluids with ${\mathrm{X}}_{{\mathrm{H}}_2\mathrm{O}}$ low enough to make fluid inclusion barometry useful at many of the world’s most active and hazardous mafic volcanic systems (e.g., Iceland, Hawaiʻi, Galápagos Islands, East African Rift, Réunion, Canary Islands, Azores, Cabo Verde).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.