2019
DOI: 10.48550/arxiv.1908.01974
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Omni SCADA Intrusion Detection Using Deep Learning Algorithms

Abstract: We investigate deep learning based omni intrusion detection system (IDS) for supervisory control and data acquisition (SCADA) networks that are capable of detecting both temporally uncorrelated and correlated attacks. Regarding the IDSs developed in this paper, a feedforward neural network (FNN) can detect temporally uncorrelated attacks at an F1 of 99.967±0.005% but correlated attacks as low as 58±2%. In contrast, long-short term memory (LSTM) detects correlated attacks at 99.56±0.01% while uncorrelated attac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?