Let R be a commutative ring with 1 ≠ 0. In this article, we introduce the concept of weakly (m, n)−closed δ−primary ideals of R and explore its basic properties. We show that a proper ideal I of R is a weakly (m, n)−closed γ ◦ δ−primary ideal of R if and only if I is an (m, n)−closed γ ◦ δ−primary ideal of R, where δ and γ are expansions ideals of R with δ(0) is an (m, n)−closed γ−primary ideal of R. Furthermore, we provide examples to demonstrate the validity and applicability of our results.