We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if
$p(n)$
denotes the number of unrestricted partitions of a positive integer n (and
$p(0)=1$
,
$p(n)=0$
for
$n<0$
), then for all nonnegative integers m,
$$ \begin{align*}\sum_{k=0}^\infty p(24m+23-\omega(-2k))+\sum_{k=1}^\infty p(24m+23-\omega(2k))\equiv 0~ (\text{mod}~144),\end{align*} $$
where
$\omega (k)=k(3k+1)/2$
.