The coupled Navier-Stokes and Q-Tensor system is considered in a bounded three-dimensional domain under homogeneous Dirichlet boundary conditions for the velocity u and either nonhomogeneous Dirichlet or homogeneous Neumann boundary conditions for the tensor Q.The corresponding initial-value problem in the whole space R 3 was analyzed in [Paicu & Zarnescu, 2012].In this paper, three main results concerning weak solutions will be proved; the existence of global in time weak solutions (bounded up to infinite time), a uniqueness criteria and a maximum principle for Q. Moreover, we identify how to modify the system to deduce symmetry and traceless for Q, for any weak solution. The presence of a stretching term in the Q-system plays a crucial role in all the analysis.