2015
DOI: 10.1080/03610926.2014.944664
|View full text |Cite
|
Sign up to set email alerts
|

On a bivariate Kumaraswamy type exponential distribution

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
7
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(7 citation statements)
references
References 13 publications
0
7
0
Order By: Relevance
“…(IV) Bivariate Kumaraswamy type exponential distribution Mirhosseini et al 9 𝑔 𝐵𝐾𝐸 (𝑥 1 , 𝑥 2 ; 𝜆 1 , 𝜆 2 , 𝛼) = (28)…”
Section: (Ii) Bivariate Cubic Rayleigh Distributionmentioning
confidence: 99%
See 4 more Smart Citations
“…(IV) Bivariate Kumaraswamy type exponential distribution Mirhosseini et al 9 𝑔 𝐵𝐾𝐸 (𝑥 1 , 𝑥 2 ; 𝜆 1 , 𝜆 2 , 𝛼) = (28)…”
Section: (Ii) Bivariate Cubic Rayleigh Distributionmentioning
confidence: 99%
“…Akhter and Hirari 13 have defined this distribution as gFGMR1()x1,x2;α,θbadbreak=ex12+x22α2x1x2()2()2+ex122α2θ+ex222α2()2θ+ex122α2()1+θα4\begin{equation}{g_{FGMR1}}\;\left( {{x_1},{x_2};\;\alpha ,\;\theta } \right) = \frac{{{{\rm{e}}^{ - \frac{{x_1^2 + x_2^2}}{{{\alpha ^2}}}}}{x_1}{x_2}\left( { - 2\left( { - 2 + {{\rm{e}}^{\frac{{x_1^2}}{{2{\alpha ^2}}}}}} \right)\theta + {{\rm{e}}^{\frac{{x_2^2}}{{2{\alpha ^2}}}}}\left( { - 2\theta + {{\rm{e}}^{\frac{{x_1^2}}{{2{\alpha ^2}}}}}\left( {1 + \theta } \right)} \right)} \right)}}{{{\alpha ^4}}}\;\end{equation}where x 1, x20,α>0,1θ1${x_2} \ge 0,\;\alpha > 0,\; - 1 \le \theta \le 1$. Bivariate Kumaraswamy type exponential distribution Mirhosseini et al 9 gBKE()x1,x2;λ1,λ2,αbadbreak=\begin{equation}{g_{BKE}}\;\left( {{x_1},{x_2};\;{\lambda _1},{\lambda _2},\alpha } \right) = \end{equation}λ1λ2αe()λ1x1+λ2x2[]1α()1…”
Section: Covid‐19 Applicationmentioning
confidence: 99%
See 3 more Smart Citations