Abstract:In recent work with Schumann we have proven a conjecture of Naito-Sagaki giving a branching rule for the decomposition of the restriction of an irreducible representation of the special linear Lie algebra to the symplectic Lie algebra, therein embedded as the fixed-point set of the involution obtained by the folding of the corresponding Dyinkin diagram. It provides a new approach to branching rules for non-Levi subalgebras in terms of Littelmann paths. In this paper we motivate this result, provide examples, a… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.