On a general divisor problem related to a certain Dedekind zeta-function over a specific sequence of positive integers
Anubhav Sharma,
Ayyadurai Sankaranarayanan
Abstract:We investigate the average behavior of coefficients of the Dirichlet series of positive integral power of the Dedekind zeta-function $\zeta_{\mathbb{K}_3}(s)$ of a non-normal cubic extension $\mathbb{K}_3$ of $\mathbb{Q}$ over a certain sequence of positive integers. More precisely, we prove an asymptotic formula with an error term for the sum\[ \sum_{{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq {x}}\atop{(a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in\mathbb{Z}^{6}}}a_{k,\mathbb{K}_3} (a_{1}^{2}+… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.