Abstract. In this paper, we study the weighted (x(q + 1), x; 2, q)-minihypers. These are weighted sets of x(q + 1) points in PG(2, q) intersecting every line in at least x points. We investigate the decomposability of these minihypers, and define a switching construction which associates to an (x(q + 1), x; 2, q)-minihyper, with x ≤ q 2 − q, not decomposable in the sum of another minihyper and a line, a (j(q + 1), j; 2, q)-minihyper, where j = q 2 − q − x, again not decomposable into the sum of another minihyper and a line. We also characterize particular (x(q + 1), x; 2, q)-minihypers, and give new examples. Additionally, we show that (x(q + 1), x; 2, q)-minihypers can be described as rational sums of lines. In this way, this work continues the research on (x(q + 1), x; 2, q)-minihypers by Hill and Ward [9], giving further results on these minihypers.