As spindle speeds increase, the variations caused by high-speed effects become more significant. Therefore, in the initial design stage, it is necessary for machine tool design engineers to construct a robust high-speed machine tool that possesses high first-mode natural frequencies (FMNFs) and is insensitive to high operating speeds. In this article, Taguchi method is used to identify the optimal values of design variables (DVs) for a robust high-speed spindle system with respect to the signal-to-noise ratio (SNR) of system FMNF. The L 18 orthogonal array covers seven main DVs at three levels each, one main DV at two levels, and the noise factor spindle speeds at six levels. The results show that the new optimal design has improved the SNR of the FMNF by 2.06 dB from the original design; this implies that the quality loss has been reduced to 62 per cent of its original value. The optimal design has been verified by a confirmation numerical experiment.