2016
DOI: 10.1186/s13661-016-0618-3
|View full text |Cite
|
Sign up to set email alerts
|

On a model of magnetization dynamics with vertical spin stiffness

Abstract: We consider a mathematical model describing magnetization dynamics with vertical spin stiffness. The model consists of a modified form of the Landau-Lifshitz-Gilbert equation for the evolution of the magnetization vector in a rigid ferromagnet. The modification lies in the presence in the effective field of a nonlinear term describing vertical spin stiffness. We prove the global existence of weak solutions to the model by using the Faedo-Galerkin method and discuss the limit of the obtained solutions as the ve… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 15 publications
0
1
0
Order By: Relevance
“…e work [4] addressed global existence of weak solution to a modern structure of the Landau-Lifshitz-Gilbert equation. e modi cation lies in occurrence of the e ective eld of a nonlinear term describing vertical spin sti ness and discuss the limit of got results as a vertical spin sti ness parameter converges to zero.…”
Section: Introductionmentioning
confidence: 99%
“…e work [4] addressed global existence of weak solution to a modern structure of the Landau-Lifshitz-Gilbert equation. e modi cation lies in occurrence of the e ective eld of a nonlinear term describing vertical spin sti ness and discuss the limit of got results as a vertical spin sti ness parameter converges to zero.…”
Section: Introductionmentioning
confidence: 99%