ABSTRACT. We investigate the long-term behavior, as a certain regularization parameter vanishes, of the three-dimensional Navier-Stokes-Voigt model of a viscoelastic incompressible fluid. We prove the existence of global and exponential attractors of optimal regularity. We then derive explicit upper bounds for the dimension of these attractors in terms of the three-dimensional Grashof number and the regularization parameter. Finally, we also prove convergence of the (strong) global attractor of the 3D Navier-Stokes-Voigt model to the (weak) global attractor of the 3D Navier-Stokes equation. Our analysis improves and extends recent results obtained by Kalantarov and Titi in [33].