Let $$N\ge 3$$
N
≥
3
, $$R>\rho >0$$
R
>
ρ
>
0
and $$A_{\rho }:=\{x\in \mathbb {R}^N;\ \rho<|x|<R\}$$
A
ρ
:
=
{
x
∈
R
N
;
ρ
<
|
x
|
<
R
}
. Let $$U^{\pm }_{n,\rho }$$
U
n
,
ρ
±
, $$n\ge 1$$
n
≥
1
, be a radial solution with n nodal domains of $$\begin{aligned} {\left\{ \begin{array}{ll} \Delta U+|x|^{\alpha }|U|^{p-1}U=0 &{} \text {in}\ A_{\rho },\\ U=0 &{} \text {on}\ \partial A_{\rho }. \end{array}\right. } \end{aligned}$$
Δ
U
+
|
x
|
α
|
U
|
p
-
1
U
=
0
in
A
ρ
,
U
=
0
on
∂
A
ρ
.
We show that if $$p=\frac{N+2+2\alpha }{N-2}$$
p
=
N
+
2
+
2
α
N
-
2
, $$\alpha >-2$$
α
>
-
2
and $$N\ge 3$$
N
≥
3
, then $$U^{\pm }_{n,\rho }$$
U
n
,
ρ
±
is nondegenerate for small $$\rho >0$$
ρ
>
0
and the Morse index $${{\textsf{m}}}(U^{\pm }_{n,\rho })$$
m
(
U
n
,
ρ
±
)
satisfies $$\begin{aligned} {{\textsf{m}}}(U^{\pm }_{n,\rho }) =n\frac{(N+2\ell -1)(N+\ell -1)!}{(N-1)!\ell !} \quad \text {for small}\ \rho >0, \end{aligned}$$
m
(
U
n
,
ρ
±
)
=
n
(
N
+
2
ℓ
-
1
)
(
N
+
ℓ
-
1
)
!
(
N
-
1
)
!
ℓ
!
for small
ρ
>
0
,
where $$\ell =[\frac{\alpha }{2}]+1$$
ℓ
=
[
α
2
]
+
1
. Using Jacobi elliptic functions, we show that if $$(p,\alpha )=(3,N-4)$$
(
p
,
α
)
=
(
3
,
N
-
4
)
and $$N\ge 3$$
N
≥
3
, then the Morse index of a positive and negative solutions $${{\textsf{m}}}(U^{\pm }_{1,\rho })$$
m
(
U
1
,
ρ
±
)
is completely determined by the ratio $$\rho /R\in (0,1)$$
ρ
/
R
∈
(
0
,
1
)
. Upper and lower bounds for $${{\textsf{m}}}(U^{\pm }_{n,\rho })$$
m
(
U
n
,
ρ
±
)
, $$n\ge 1$$
n
≥
1
, are also obtained when $$(p,\alpha )=(3,N-4)$$
(
p
,
α
)
=
(
3
,
N
-
4
)
and $$N\ge 3$$
N
≥
3
.