We examine the orthographic-n-point problem (OnP), which extends the perspective-n-point problem to telecentric cameras. Given a set of 3D points and their corresponding 2D points under orthographic projection, the OnP problem is the determination of the pose of the 3D point cloud with respect to the telecentric camera. We show that the OnP problem is equivalent to the unbalanced orthogonal Procrustes problem for non-coplanar 3D points and to the sub-Stiefel Procrustes problem for coplanar 3D points. To solve the OnP problem, we apply existing algorithms for the respective Procrustes problems and also propose novel algorithms. Furthermore, we evaluate the algorithms to determine their robustness and speed and conclude which algorithms are preferable in real applications. Finally, we evaluate which algorithm is most suitable as a minimal solver in a RANSAC scheme.