2021
DOI: 10.48550/arxiv.2112.03147
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On Algebraic Theta Divisors and Rational Solutions of the KP Equation

Abstract: In this paper we classify the singular curves whose theta divisors in their generalized Jacobians are algebraic, meaning that they are cut out by polynomial analogs of theta functions. We also determine the degree of an algebraic theta divisor in terms of the singularities of the curve. Furthermore, we show a precise relation between such algebraic theta functions and the corresponding tau functions for the KP hierarchy.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?