Following a construction of Stanley we consider toric face rings associated to rational pointed fans. This class of rings is a common generalization of the concepts of Stanley-Reisner and affine monoid algebras. The main goal of this article is to unify parts of the theories of Stanley-Reisner and affine monoid algebras. We consider (non-pure) shellable fan's and the Cohen-Macaulay property. Moreover, we study the local cohomology, the canonical module and the Gorenstein property of a toric face ring.