This article describes a simple and elegant compact higher order finite-difference based numerical solution technique to the primitive variable formulation of unsteady incompressible Navier Stokes equations (UINSE) on staggered grids. The method exploits the advantages of the D'yakanov ADI-like scheme and a non-iterative pressure correction based fractional step method. Spatial derivatives are discretized to fourth order accuracy and the time integration is realized through the Euler explicit method. The fast and efficient iterative solution to the discretized momentum and pressure Poisson equations is achieved using a variant of conjugate gradient method. Spatial accuracy and robustness of the solver are tested through its application to relevant benchmark problems.