In this article, by using a new form of multi-quadratic mapping, we define multi-m-Jensen-quadratic mappings and then unify the system of functional equations defining a multi-m-Jensen-quadratic mapping to a single equation. Using a fixed point theorem, we study the generalized Hyers-Ulam stability of multi-quadratic and multi-m-Jensen-quadratic functional equations. As a consequence, we show that every multi-m-Jensen-quadratic functional equation
(under some conditions) can be hyperstable.