Interpolation and random noise removal is a prerequisite for multichannel techniques because the irregularity and random noise in observed data can affect their performances. Projection Onto Convex Sets (POCS) method can better handle seismic data interpolation if the data's signal-to-noise ratio (SNR) is high, while it has difficulty in noisy situations because it inserts the noisy observed seismic data in each iteration. Weighted POCS method can weaken the noise effects, while the performance is affected by the choice of weight factors and is still unsatisfactory. Thus, a new weighted POCS method is derived through the Iterative Hard Threshold (IHT) view, and in order to eliminate random noise, a new adaptive method is proposed to achieve simultaneous seismic data interpolation and denoising based on dreamlet transform. Performances of the POCS method, the weighted POCS method and the proposed method are compared in simultaneous seismic data interpolation and denoising which demonstrate the validity of the proposed method. The recovered SNRs confirm that the proposed adaptive method is the most effective among the three methods. Numerical examples on synthetic and real data demonstrate the validity of the proposed adaptive method.