2021
DOI: 10.13189/ms.2021.090201
|View full text |Cite
|
Sign up to set email alerts
|

On Application of Max-Plus Algebra to Synchronized Discrete Event System

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 12 publications
0
2
0
Order By: Relevance
“…Now, by the same method as Example 4 we observe the det (𝑧 𝐴 ) and det (𝑧 𝐴 𝑖 ) where 𝐴 𝑖 = (π‘Ž 1 , … , π‘Ž π‘–βˆ’1 , 𝑏, π‘Ž 𝑖+1 , … , π‘Ž 𝑛 ) for 𝑖 ∈ {1,2,3}.𝑧 𝐴 = ( 𝑧 πœ€ β€² 𝑧 πœ€ β€² 𝑧 4 𝑧 1 𝑧 πœ€ β€² 𝑧 πœ€ β€² 𝑧 πœ€ β€² 𝑧 0 𝑧 πœ€ β€² ),then we get det(𝑧 𝐴 ) = 𝑧5 , π‘‘π‘œπ‘š(𝐴) = 5 and 𝑠𝑖𝑔𝑛(𝐴) = +1. 𝑧 πœ€ β€² 𝑧4 𝑧 1 𝑧 πœ€ β€² 𝑧 πœ€ β€² 𝑧 0 𝑧 0 𝑧 πœ€ β€² ),then we get 𝑑𝑒𝑑(𝑧 𝐴 1 ) = 𝑧5 , π‘‘π‘œπ‘š(𝐴 1 ) = 5 and 𝑠𝑖𝑔𝑛(𝐴1 ) = +1. 𝐴 2 = ( πœ€β€² πœ€β€² 4 1 1 πœ€β€² πœ€β€² 0 πœ€β€² ) , 𝑧 𝐴 2 = ( 𝑧 πœ€ β€² 𝑧 πœ€ β€² 𝑧 4 𝑧 1 𝑧 1 𝑧 πœ€ β€² 𝑧 0 𝑧 0 𝑧 πœ€ β€²…”
mentioning
confidence: 85%
See 1 more Smart Citation
“…Now, by the same method as Example 4 we observe the det (𝑧 𝐴 ) and det (𝑧 𝐴 𝑖 ) where 𝐴 𝑖 = (π‘Ž 1 , … , π‘Ž π‘–βˆ’1 , 𝑏, π‘Ž 𝑖+1 , … , π‘Ž 𝑛 ) for 𝑖 ∈ {1,2,3}.𝑧 𝐴 = ( 𝑧 πœ€ β€² 𝑧 πœ€ β€² 𝑧 4 𝑧 1 𝑧 πœ€ β€² 𝑧 πœ€ β€² 𝑧 πœ€ β€² 𝑧 0 𝑧 πœ€ β€² ),then we get det(𝑧 𝐴 ) = 𝑧5 , π‘‘π‘œπ‘š(𝐴) = 5 and 𝑠𝑖𝑔𝑛(𝐴) = +1. 𝑧 πœ€ β€² 𝑧4 𝑧 1 𝑧 πœ€ β€² 𝑧 πœ€ β€² 𝑧 0 𝑧 0 𝑧 πœ€ β€² ),then we get 𝑑𝑒𝑑(𝑧 𝐴 1 ) = 𝑧5 , π‘‘π‘œπ‘š(𝐴 1 ) = 5 and 𝑠𝑖𝑔𝑛(𝐴1 ) = +1. 𝐴 2 = ( πœ€β€² πœ€β€² 4 1 1 πœ€β€² πœ€β€² 0 πœ€β€² ) , 𝑧 𝐴 2 = ( 𝑧 πœ€ β€² 𝑧 πœ€ β€² 𝑧 4 𝑧 1 𝑧 1 𝑧 πœ€ β€² 𝑧 0 𝑧 0 𝑧 πœ€ β€²…”
mentioning
confidence: 85%
“…A system of linear equations 𝐴π‘₯ = 𝑏 can be solved using Cramer's rule when 𝐴 is a non-singular matrix, or we can say det(A) β‰  0 [1], [2]. Max-plus algebra is a set ℝ π‘šπ‘Žπ‘₯ = {βˆ’βˆž} βˆͺ ℝ where ℝ is a set of real numbers, equipped with two binary operations βŠ• and βŠ— where π‘₯ βŠ• 𝑦 = π‘šπ‘Žπ‘₯(π‘₯, 𝑦) and π‘₯ βŠ— 𝑦 = π‘₯ + 𝑦 [3], [4]. The structure (ℝ π‘šπ‘Žπ‘₯ ,βŠ•,βŠ—) is a semifield with a multiplication identity element 𝑒 = 0 and an addition identity element πœ€ = βˆ’βˆž [πŸ“], [πŸ”], [πŸ•].…”
Section: Introductionmentioning
confidence: 99%