2012
DOI: 10.1016/j.jat.2011.12.003
|View full text |Cite
|
Sign up to set email alerts
|

On approximation numbers of composition operators

Abstract: We show that the approximation numbers of a compact composition operator on the weighted Bergman spaces B α of the unit disk can tend to 0 arbitrarily slowly, but that they never tend quickly to 0: they grow at least exponentially, and this speed of convergence is only obtained for symbols which do not approach the unit circle. We also give an upper bounds and explicit an example.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
80
0
2

Year Published

2012
2012
2020
2020

Publication Types

Select...
6
1

Relationship

5
2

Authors

Journals

citations
Cited by 37 publications
(84 citation statements)
references
References 39 publications
2
80
0
2
Order By: Relevance
“…Remark: Theorem 3.5 of [15] gives a very imprecise estimate on the approximation numbers of lens maps, as we noticed in that paper. On the other hand, when we apply it to a lens map spread by multiplication by the inner function M , we obtain an estimate which is close to being optimal, up to a logarithmic factor.…”
Section: ) Modulus Constraintmentioning
confidence: 64%
See 1 more Smart Citation
“…Remark: Theorem 3.5 of [15] gives a very imprecise estimate on the approximation numbers of lens maps, as we noticed in that paper. On the other hand, when we apply it to a lens map spread by multiplication by the inner function M , we obtain an estimate which is close to being optimal, up to a logarithmic factor.…”
Section: ) Modulus Constraintmentioning
confidence: 64%
“…We first recall the context of this work, which appears as a continuation of [9], [10], [11], [14] and [15].…”
Section: Introductionmentioning
confidence: 99%
“…Par exemple, si C est la classe des opérateurs de Hankel, on peut montrer ( [41], avec une preuve très élaborée) que la suite (a n (T )) est encore décroissante arbitraire. Mais si C est la classe des opérateurs de composition sur l'espace de Hardy usuel H 2 du disque, cette suite n'est plus arbitraire et son étude est également non-triviale ( [37]) : en particulier, on a toujours a n (T ) ≥ δr n avec δ, r > 0. On va présenter ici une étude analogue pour les opérateurs de composition sur les espaces de Hardy-Dirichlet H p , issue de [49] et [11].…”
Section: Opérateurs Compacts Et Nombres D'approximationunclassified
“…(1) Les premiers résultats sur les nombres d'approximation des opéra-teurs de composition (sur les espaces de Hardy et Bergman du disque) sont apparus dans [37]. Voir aussi [49] pour l'espace de Hardy des séries de Dirichlet.…”
Section: Remarques 319unclassified
“…For composition operators C Φ : H 2 (D) → H 2 (D) on the Hardy space of the unit disk, the decay of their approximation numbers a n (C Φ ) cannot be arbitrarily fast, and actually cannot supersede a geometric speed ( [16]; see also [10,Theorem 3.1]): there exists a positive constant c such that: a n (C Φ ) e −cn , n = 1, 2, . .…”
Section: Introductionmentioning
confidence: 99%