2018
DOI: 10.1016/j.jde.2017.09.037
|View full text |Cite
|
Sign up to set email alerts
|

On approximation of Ginzburg–Landau minimizers by S1-valued maps in domains with vanishingly small holes

Abstract: We consider a two-dimensional Ginzburg-Landau problem on an arbitrary domain with a finite number of vanishingly small circular holes. A special choice of scaling relation between the material and geometric parameters (Ginzburg-Landau parameter vs hole radius) is motivated by a recently discovered phenomenon of vortex phase separation in superconducting composites. We show that, for each hole, the degrees of minimizers of the Ginzburg-Landau problems in the classes of S 1 -valued and C-valued maps, respectivel… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 18 publications
0
0
0
Order By: Relevance