Abstract:Numerical monoids (cofinite, additive submonoids of the non-negative integers) arise frequently in additive combinatorics, and have recently been studied in the context of factorization theory. Arithmetical numerical monoids, which are minimally generated by arithmetic sequences, are particularly well-behaved, admitting closed forms for many invariants that are difficult to compute in the general case. In this paper, we answer the question "when does omitting generators from an arithmetical numerical monoid S … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.