2024
DOI: 10.1093/qmath/haae040
|View full text |Cite
|
Sign up to set email alerts
|

On Artin’s Primitive Root Conjecture for Function Fields over 𝔽q

Leonhard Hochfilzer,
Ezra Waxman

Abstract: In 1927, E. Artin proposed a conjecture for the natural density of primes p for which g generates $(\mathbb{Z}/p\mathbb{Z})^\times$. By carefully observing numerical deviations from Artin’s originally predicted asymptotic, Derrick and Emma Lehmer (1957) identified the need for an additional correction factor, leading to a modified conjecture which was eventually proved to be correct by Hooley (1967) under the assumption of the generalized Riemann hypothesis. An appropriate analogue of Artin’s primitive root co… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?