On bounded two-dimensional globally dissipative Euler flows
Björn Gebhard,
József J. Kolumbán
Abstract:We examine the two-dimensional Euler equations including the local energy (in)equality as a differential inclusion and show that the associated relaxation essentially reduces to the known relaxation for the Euler equations considered without local energy (im)balance. Concerning bounded solutions we provide a sufficient criterion for a globally dissipative subsolution to induce infinitely many globally dissipative solutions having the same initial data, pressure and dissipation measure as the subsolution. The c… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.