Let (A, m) be a Cohen-Macaulay local ring, M a Cohen-Macaulay A-module of dimension d ≥ 1 and I a proper ideal of analytic deviation one with respect to M. In this paper we study the Cohen-Macaulayness of associated graded module of a Cohen-Macaulay module. We show that if I is generically a complete intersection of analytic deviation one and reduction number at most one with respect to M then G I (M ) is Cohen-Macaulay. When analytic spread of I with respect to M equals d we prove a similar result when reduction number of an ideal is atmost two.