On certain quantifications of Gromov’s
nonsqueezing theorem
Kevin Sackel,
Antoine Song,
Umut Varolgunes
et al.
Abstract:Let R > 1 and let B be the Euclidean 4-ball of radius R with a closed subset E removed. Suppose that B embeds symplectically into the unit cylinder D 2 R 2 . By Gromov's nonsqueezing theorem, E must be nonempty. We prove that the Minkowski dimension of E is at least 2, and we exhibit an explicit example showing that this result is optimal at least for R Ä p 2. In the appendix by Joé Brendel, it is shown that the lower bound is optimal for R < p 3. We also discuss the minimum volume of E in the case that the sy… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.